Matching LBO eigenspace of non-rigid shapes via high order statistics

نویسندگان

  • Alon Shtern
  • Ron Kimmel
چکیده

A fundamental tool in shape analysis is the virtual embedding of the Riemannian manifold describing the geometry of a shape into Euclidean space. Several methods have been proposed to embed isometric shapes in flat domains while preserving distances measured on the manifold. Recently, attention has been given to embedding shapes into the eigenspace of the LapalceBeltrami operator. The Laplace-Beltrami eigenspace preserves the diffusion distance, and is invariant under isometric transformations. However, LaplaceBeltrami eigenfunctions computed independently for different shapes are often incompatible with each other. Applications involving multiple shapes, such as pointwise correspondence, would greatly benefit if their respective eigenfunctions were somehow matched. Here, we introduce a statistical approach for matching eigenfunctions. We consider the values of the eigenfunctions over the manifold as sampling of random variables, and try to match their multivariate distributions. Comparing distributions is done indirectly, using high order statistics. We show that the permutation and sign ambiguities of low order eigenfunctions, can be inferred by minimizing the difference of their third order moments. The sign ambiguities of antisymmetric eigenfunctions can be resolved by exploiting isometric invariant relations between the gradients of the eigenfunctions and the surface normal. We present experiments demonstrating the success of the proposed method applied to feature point correspondence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matching the LBO Eigenspace of Non-Rigid Shapes via High Order Statistics

A fundamental tool in shape analysis is the virtual embedding of the Riemannian manifold describing the geometry of a shape into Euclidean space. Several methods have been proposed to embed isometric shapes into flat domains, while preserving the distances measured on the manifold. Recently, attention has been given to embedding shapes into the eigenspace of the Laplace–Beltrami operator. The L...

متن کامل

Hierarchical Matching of Non-rigid Shapes

Detecting similarity between non-rigid shapes is one of the fundamental problems in computer vision. While rigid alignment can be parameterized using a small number of unknowns representing rotations, reflections and translations, non-rigid alignment does not have this advantage. The majority of the methods addressing this problem boil down to a minimization of a distortion measure. The complex...

متن کامل

Regularized Partial Matching of Rigid Shapes

Matching of rigid shapes is an important problem in numerous applications across the boundary of computer vision, pattern recognition and computer graphics communities. A particularly challenging setting of this problem is partial matching, where the two shapes are dissimilar in general, but have significant similar parts. In this paper, we show a rigorous approach allowing to find matching par...

متن کامل

Partial matching of rigid shapes

Matching of rigid shapes is an important problem in numerous applications across the boundary of computer vision, pattern recognition and computer graphics communities. A particularly challenging setting of this problem is partial matching, where the two shapes are dissimilar in general, but have significant similar parts. In this paper, we show an approach allowing to find matching parts of ri...

متن کامل

Matching solid shapes in arbitrary dimension via random sampling∗

We give simple probabilistic algorithms that approximately maximize the volume of overlap of two solid, i.e. full-dimensional, shapes under translations and rigid motions. The shapes are subsets of Rd where d ≥ 2. The algorithms approximate with respect to an pre-specified additive error and succeed with high probability. Apart from measurability assumptions, we only require that points from th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1310.4459  شماره 

صفحات  -

تاریخ انتشار 2013